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INTRODUCTION: 

Let {Xₙ, n ≥ 1} be a sequence of independent and 
identically distributed (i.i.d.) random variables, all having 
the same distribution function F, and defined on the same 

probability space (Ω,,P). Let 
n

n k

k = 1

S = X , for n ≥ 1. 

This sequence {Sₙ} is called the partial sum sequence. 

In probability theory, there are three major limit 
theorems: 

I. The Law of Large Numbers 

II. The Central Limit Theorem 

III. The Law of the Iterated Logarithm 

These theorems are based on the concept of weak 
convergence or are derived from the central limit theorem. 
Before we discuss them briefly, let’s review some 
important terms that will be used. 

SEQUENCE OF INDEPENDENT AND IDENTICALLY 
DISTRIBUTED RANDOM VARIABLES 

We say that {Xₙ, n ≥ 1} is a sequence of independent 
random variables if any group of these variables, no 
matter how small or large, is all independent of each other. 
Let X and Y be two random variables with distribution 
functions F and G, respectively. We say that X and Y are 
identically distributed if they follow the same 
distribution; that is, F(x) = G(x) for all real values of x. 

A sequence {Xₙ, n ≥ 1} is called independent and 
identically distributed (i.i.d.) if: 

The variables are independent of each other, and each  

 

random variable Xₙ has the same 

distribution as the first one, meaning P(Xₙ ≤ x) = F(x) for 
all n ≥ 2. 

MODES OF CONVERGENCE 

There are different ways in which a sequence of random 
variables can approach a limit. These are called modes of 
convergence. We’ll look at three types of convergence for 
random variables, and a kind for distributions. 

1. CONVERGENCE IN PROBABILITY 

A sequence of random variables {Xₙ} is said to converge in 
probability to a random variable X if, for every small 
number ε > 0, P(|Xₙ − X| > ε) → 0 as n → ∞ 

This means that the probability that Xₙ is far from X 
becomes smaller and smaller as n increases. We write this 

as: Xₙ → X in probability, or symbolically:
P

nX X . 

2. ALMOST SURE CONVERGENCE 

A sequence {Xₙ} converges almost surely (also called 
with probability 1) to a random variable X if:

 n
n  

P lim X =X = 1
 

. In simpler terms, this means that 

with probability 1, the values of Xₙ will eventually settle 
down and stay close to X forever. We write this as: 

Xₙ → X almost surely, or symbolically:
  a.s

nX X.  
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3. CONVERGENCE IN DISTRIBUTION 

A sequence of random variables {Xₙ, n ≥ 1}, with 
corresponding distribution functions {Fₙ}, is said to 
converge in distribution (or weakly) to a random 
variable X with distribution function F if:Fₙ(x) → F(x) as n 
→ ∞, at every point where F is continuous. This type of 
convergence is written as:Xₙ → X in distribution, or 

d

nX X , n . 

I. LAWS OF LARGE NUMBERS 

Let {Xn, n ≥ 1} be a sequence of random variables with a 
common distribution function. F, defined on the same 
probability space (Ω, , P).Let the partial sum sequence 
be: 





n

1k
k
X

n
S , for n ≥ 1. 

We are interested in knowing under what conditions on 
{Xₙ} there exists a constant random variable ξ (called 
degenerate, because it takes only one value), such that: Sₙ 
/ n → ξ, under any mode of convergence. 

If this happens with convergence in probability, we say the 
Weak Law of Large Numbers (WLLN)hold. 

If it happens under almost sure convergence, we say the 
Strong Law of Large Numbers (SLLN) hold. 

Let’s look at some examples: 

(A) KHINTCHINE’S WEAK LAW OF LARGE NUMBERS 
(WLLN) 

Let {Xₙ, n ≥ 1} be a sequence of i.i.d. random variables. If 
the expected value E(X₁) = μ (a finite mean exists), then:
 Sₙ / n → μ in probability, as n → ∞.This means 
that the sample average gets closer and closer to the 
expected value μ with high probability as the number of 
terms increases. 

(B) KOLMOGOROV’S WEAK LAW OF LARGE NUMBERS 
(WLLN): 

Let {Xₙ, n ≥ 1} be a sequence of independent and 
identically distributed random variables with a common 
distribution function F. A necessary and sufficient 
condition for the Weak Law of Large Numbers to hold for 

P

n

S
n - ξ 0
n

 is that  
t
lim t 1-F(t)+F(-t) = 0


. 

If the condition is satisfied n may be taken as
n

n

- n

ξ = x dF(x) . 

Example 1: Consider a random variable X with the 
distribution function 

0

0

0,                   if x<a

F(x)=

1
1- , if a

x log x

 

, where a0 is a solution of 

a0 log a0=1. 

This example does not satisfy Khintchine’s WLLN but does 
satisfy Kolmogorov’s WLLN. 

Example 2: Consider the standard Cauchy distribution. 
Since E(X) does not exist, Khintchine’s WLLN does not 
hold. Kolmogorov’s WLLN also fails in this case. 

(C) TCHEBYCHEV’S WEAK LAW OF LARGE NUMBERS: 

Let {Xₙ, n ≥ 1} be a sequence of uncorrelated random 
variables such that E(Xₙ) = μₙ, Var(Xₙ) = σₙ²,andCov(Xᵢ, Xⱼ) 
= 0 for i ≠ j. 

Define the sample mean and the average mean as:
n

n i

i = 1

1
X = X

n
 ,and

n

in

i = 1

1
μ = μ

n
 . 

Then, X̄ₙ converges in probability to
n

μ , as n → ∞,provided 

that:

n
2

k

k=1

2

σ

0 as n
n

 


. 

II. CENTRAL LIMIT THEOREM 

Let {Xₙ, n ≥ 1} be a sequence of random variables, and let 





n

1k
k
X

n
S , n≥1, be the sequence of partial sums. 

The Central Limit Problem determines under what 
conditions on {Xₙ, n ≥ 1} there exist sequences of real 
constants {Aₙ, n ≥ 1} and {Bₙ, n ≥ 1} (with Bₙ → ∞ as n → 
∞) such that the sequence (Sₙ – Aₙ) / Bₙ converges 
(weakly) to a non-degenerate random variable 
(particularly, a normal variable). 

Some important versions of the Central Limit Theorem 
(CLT) are presented below. 

(D) LINDEBERG–FELLER CENTRAL LIMIT THEOREM 

Let {Xₙ, n ≥ 1} be a sequence of independent, identically 
distributed random variables with Var (Xₙ) = σₙ² < ∞, n = 

1, 2, 3, …; Let
n

n i

i=1

S = X , E(Xₙ) = μₙ, mₙ = E(Sₙ) and sₙ² = 

Var(Sₙ).Then the following two conditions: 

(i) (Sₙ – mₙ)/sₙ converges in distribution to a 
standard normal variable, and 

(ii) E(exp{it(S
n

- m
n
)/s

n
})  → 

2exp{- t /2} for 

every t ∈ ℝ , holds if and only if, for every ε > 0, 
the condition 
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(iii)     
n

2

i i i i n2
i=1n

1
E X -μ .1 X -μ > s 0

s

       


is satisfied. 

The sufficiency part of condition (iii) is called the 
Lindeberg condition, and the necessity part of condition 
(iii) is called the Feller condition. Together, they form the 
Lindeberg–Feller Central Limit Theorem (CLT). 

(E) CENTRAL LIMIT THEOREM DUE TO PAUL LÉVY 

(F) CENTRAL LIMIT THEOREM DUE TO LYAPUNOV 

III. LAWOFTHE ITERATED LOGARTM: 

Let {Xn, n ≥ 1} be a sequence of independent and 
identically distributed random  

variables with common distribution function F, defined on 
a common probability space 

(Ω, , P). Let 
n

n i

i=1

S = X  , n 1. The sequence {Sn} is 

called the partial sum sequence. Set

S
n Z  = - A  , n 1

n nB
n

 , n 1, where {An} and {Bn} are 

some norming constants with Bn>0. 

When Bn = n and An = 0, the laws of large of numbers tells 
that the sequence {Zn, n 1} converges to a degenerate 
random variable, under any modes of convergence, 
discussed above. i.e., convergence in probability or almost 
sure convergence. 

Secondly, central limit problems tell that under what 
conditions on {Xn, n 1}, there exist {An, n 1} and {Bn, n 
1} be sequences of real constants (Bn, as n  ), such 
that a sequence {Zn} converges (weakly) to a 
non-degenerate random variable (particularly normal 
variable). 

Therefore, it is natural to ask what happens in between the 
laws of large numbers and the central limit problem, when 
the limit does not exist, i.e., whether non-trivial limit 
behaviour is obtainable or not? Hence, the study relates to 
these types of issues, we call it as “Law of Iterated 
Logarithm”. i.e., the studies of the behaviour of the upper 
sums limit and the lower sums limit is called “Law of 
Iterated Logarithm” (LIL).  Hence, one wants to study 
whether Limit infimum or Limit suprimum exists for 

S
n Z =   -  A

n nB
n

or not? 

In 1924, A. YA.Khinchine is the first person to study these 
types of problems. In fact, he developed this in number 
theory. Later, A. N. Kolmogorov [1929] developed the 
theory for bounded random variables with finite variance. 

(G) KOLMOGOROV’S LAW OF THE ITERATED 
LOGARITHM 

Let{Xn,n ≥ 1} be a sequence of independent random 

variables with 

E(Xn) = 0 and  2 2

n nE X  = σ , for all n 1
n n

2 2

n k n k

k=1 k=1

S = X and B = σ  for n 1.   

Let {kn}) be a sequence of positive constants such that kn 
0 as n.If the following conditions hold: 

1. n

n

X
0 as n

B
  , 

2.  n n n

n=1

P X >k B <   a.s.


 , then

 n

2 2n  

n n

S
lim Sup =1 a.s.

2 B  loglogB
 

Proof: 

 Set  n n n
n n X k B

Y = X 1 . Then it suffices to show 

that for every >0, 

 n n

2 2

n n

S - E Y
P > (1+ ) i.o  = 0

2B  loglog B

       
, and using the 

Borel–Cantelli lemma, one can prove this; details are 
omitted. If we replace every (Xn) by (-Xn), we obtain the 
corresponding lower bound. 

In the case where the (Xn) are unbounded but are 
independent and identically distributed random variables, 
Hartman and Wintner (1941) established that the 
existence of the second moment is indeed sufficient for 
this LIL for the partial sums. Their result is known as the 
Hartman–Wintner type LIL, or the classical law of the 
iterated logarithm. 

(H) HARTMAN AND WINTNER LAW OF THE ITERATED 
LOGARITHM 

Let {Xn} be a sequence of independent and identically 
distributed random variables  

with E(X1
2) < and EX1 = 0. Then

n

n  

S
lim Sup = 1 a.s.

2n loglog n 
The proof follows by 

using a truncation method together with the Borel–Cantelli 
lemma. 

When  2 + 

1E X < 


Allan Gut (1986) established the 

classical LIL for geometrically fast increasing 
subsequences of the partial sums. In fact, he proved that 

k k

n *

k  
n n

S
lim Sup = 1  a.s.,

2B  loglog B

k

 
  

where * is a constant determined by the growth rate of 
the subsequence {nk}. Torrang (1987) extended the result 
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to random subsequences. 

Observe that when k+1

k

n

n
 , then (e* = 0), and we 

recover the classical result: 

k

k k

n

k 
n n

S
lim Sup = 1 a.s.

2B  loglog B
 

That is, for such cases, the norming sequence 

k k

2 2

n n2B loglogB is not precise enough to give  

almost-sure bounds for 
knS . 

In general, whenever k+1

k

n

n
 Rainer Schwabe and 

Allan Gut (1996) have shown that the classical normalizing 
sequence must be replaced by an adjusted one: 

k k

2 2 k+1
n n

k

n
2B loglog B + loglog .

n

            
 

Note that sequences of the form (nk = [ck], (c > 1), fall 
within the class of geometrically increasing subsequences. 

For a comprehensive treatment of the LIL literature, 
see Bingham (1986). 

WHEN THE SECOND MOMENT IS INFINITE 

To understand the LIL in the case where the second 
moment is infinite, we first need to discuss certain types of 
distributions that possess infinite second moments. 

INFINITELY DIVISIBLE DISTRIBUTIONS 

A distribution function F is called infinitely divisible (i.d.) if, 
for every positive integer n, there exists a distribution 

function Fn such that
*n

nF = F , that is, F is the n-fold 

convolution of Fn. 

Equivalently, a characteristic function ϕ is said to be 
infinitely divisible if, for every integer n, there exists a 

characteristic function ϕn such that  n

n(t) (t)  . 

EXAMPLES 

1. NORMAL DISTRIBUTION: 

Let ϕ be the characteristic function of a normal 
random variable with mean and variance2. 

Then  2 21
2

(t) = exp iμt - t σ which is clearly 

infinitely divisible. 

2. POISSON DISTRIBUTION: 

For a Poisson distribution with parameter,

 i t(t) = exp λ(e -1) . 

and hence (t) is infinitely divisible.  

3. GAMMA DISTRIBUTION: 

For a Gamma distribution with shape  and rate ,

  - α
(t) = 1 - it/β . which is also 

infinitely divisible. 

REMARK: 

The class of all infinitely divisible distributions coincides 
with the class of limit distributions (in the sense of weak 
convergence) of sums of independent random variables. 
Moreover, the weak limit of a sequence of infinitely 
divisible distributions, if it exists, is itself infinitely 
divisible. 

DISTRIBUTIONS OF CLASS L 

Let {Xn, n ≥ 1} be a sequence of independent random 
variables, and let {bn} be a sequence of positive real 
numbers such that the following uniform asymptotic 
negligibility (U.A.N.) condition holds:

 k n
1 k n
Max P X  > εb 0, for every ε > 0.
 

  

Write k
n,k

n

X
X  = ,  1 k n.

b
  Then the triangular array 

{Xn,k} satisfies the U.A.N. condition. 

Set
n

n n,k

k=1

S = X , n 1 . Let Class L be the set of all 

distributions that arise as weak limits of the distributions 
of the sums an+bnSn, where an and bn> 0 are suitably 
chosen constants. 
It follows that Class L forms a subclass of the infinitely 
divisible distributions. 

A distribution function F with characteristic function 
belongs to Class L, if and only if, for every 0 < c < 1, 
there exists a characteristic function, 

c(t) = (ct) (t), t    . 

REMARK: 

Degenerate distributions, the normal distribution, the 
Cauchy distribution, and the two-parameter Laplace 
distribution all belong to Class L. 

STABLE DISTRIBUTIONS 

A distribution function F is said to be stable if and only if, 
for every b1> 0, b2> 0, and real numbers a1 and a2, there 
existb > 0and a real number a such that 

F(b1 x + a1) * F(b2 x + a2) = F(bx + a), 

or the equivalent defining relation your source implies. 

The characteristic function (t) of a stable distribution 
has the following representation: 

  α πα
2

(t) = exp iat - c t 1-iβsgn(t)tan ,  

where a, b (often written ), , and c, are real constants 
with c ≥ 0, |b|< 1, and 0 <≤ 2. Here,  is called the 
characteristic exponent. The parameters and c determine 
only the location and scale; therefore, without loss of 
generality, we may assume  = 0 and c = 1. 
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A stable random variable is positive-valued (respectively 
negative-valued) whenever 0 << 1 and  = -1 
(respectively  = 1) in the characteristic function 
representation. A stable random variable with  = 2 is a 
normal random variable. 

SEMI-STABLE DISTRIBUTIONS 

A distribution function G is said to be semi-stable if it is 
either normal or if the  

characteristic function (t) of G is of the form with 
spectral function 

- α - α

1 2H(-x) = x q (log x), x > 0   and   H(x) = - x q (log x), x > 0

where 0 << 2, and where q1 and q2are periodic functions 
with a common period. These functions satisfy, for all x 
and all h ≥ 0, 

α h - α h

i i i i ie q (x - h) - e q (x+h) 0    and d q (x) c ,      i = 1,2  
with c1 + c2> 0. 

DOMAIN OF ATTRACTION 

Let {Xn, n ≥ 1} be a sequence of independent and 
identically distributed random 

variables with a common distribution function F. Let
n

n i

i=1

S = X  , n 1. Set n n
n

n

S  - A
Z  = 

B
, where {An} and 

{Bn} are sequences of real constants with Bn> 0. If the 
sequence of normalised sums {Zn} converges in 
distribution to a random variable whose distribution 
function is G, then F is said to belong to the domain of 
attraction of G. It is well known that such a limit law is 
always a stable law (see Gnedenko, B. V. and Kolmogorov, 
A. N. [1954], p. 162). 

DOMAIN OF PARTIAL ATTRACTION 

Sometimes it may happen that the sequence (Zn) does not 
converge for any choice of the constants (An) and (Bn). 
However, for some subsequence (nk), the corresponding 
normalised sequence may converge to a non-degenerate 
distribution. In such a case, the distribution function F is 
said to belong to the domain of partial attraction of that 
limit law. The limit law in this setting is always an 
infinitely divisible distribution. 

DOMAIN OF NORMAL ATTRACTION 

A distribution function F (or a random variable X with 
distribution function F) is said to belong to the domain of 
normal attraction of a stable law with characteristic 
exponent, 

0 <≤ 2, if it belongs to its domain of attraction withBn = 
an1/,where a is some positive constant. 

Now set
n

n i

i=1

S = X  , n 1. If the sequence{Zn, n ≥ 1}, for 

suitable choices of {An} and {Bn}, converges weakly, then it 
is well known that the limit law must be stable (see 
Gnedenko, B. V. and Kolmogorov, A. N. [1954], p. 162). In 
this case, F is said to belong to the domain of attraction of 

the limiting stable law. 

It is also known that every stable law belongs to its own 
domain of attraction. For an integer subsequence(nk), and 

for appropriate choices of
k kn nA and B , if

k k

k

k

n n

n

n

S  - A
Z  = 

B
 

converges weakly to a non-degenerate law, then the limit 
must necessarily be an infinitely divisible distribution. In 
this situation, F is said to belong to the domain of partial 
attraction of the limiting infinitely divisible law. It is true 
that every infinitely divisible law has a non-empty domain 
of partial attraction (see Gnedenko, B. V. and Kolmogorov, 
A. N. [1954], p. 184). Kruglov [1972] characterised the 

class U of limit laws of k k

k

k

n n

n

n

S  - A
Z  = 

B
under the 

assumptions that the subsequence (nk) is strictly 

increasing and that kn

1/α

k

B

n
converges to a constant. They 

established that the class U of limit laws coincides with the 
class of all semi-stable laws. 

When the random variables (Xn) are independently 
distributed with a common symmetric distribution 
function, Chover [1966] obtained a law of the iterated 
logarithm by using power normalization for the sequence 
of partial sums {Sn}. He established these results based on 
the tail probabilities of the random variable X1. Specifically, 
Chover observed that for stable random variables, an LIL 
involving the limit superior cannot be obtained under 
linear normalisation, but it becomes possible under power 
normalisation. In fact, when the Xn's are i.i.d. symmetric 
stable random variables, Chover (1966) established an LIL 
for Sn using power normalisation; that is, 

 
n

1/α1/α
n  

S
lim Sup  = C a.s.

n loglogn 
 

for a suitable constant C. 

Later, Vasudeva (1984) extended the result to random 
variables in the domain of attraction of a stable law with 
index 0 << 2. Divanji and Vasudeva (1989) further 
extended the result to the domain of partial attraction of a 
semi-stable law with index 0 << 2. 

In fact, Professor R. Vasudeva and we studied laws of the 
iterated logarithm for delayed sums, weighted sums, stable 
subordinators, moving averages, random sums, Wiener 
processes, and related structures and published many 
papers in national and international journals. 
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