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ABSTRACT:

The work surveys stable, semi-stable, and infinitely divisible laws, emphasizing domains of attraction and partial attraction. It
highlights key results on limit theorems, especially laws of the iterated logarithm under power normalisation. Contributions
include extensions to stable and semi-stable domains, subsequences, delayed sums, random sums, and related stochastic
processes.
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INTRODUCTION:

Let {X,, n = 1} be a sequence of independent and
identically distributed (i.i.d.) random variables, all having
the same distribution function F, and defined on the same

n
probability space (Q,3J,P). Let S, = Zxk, for n > 1.
k=1

This sequence {S,} is called the partial sum sequence.

In probability theory, there are three major limit
theorems:

I.  The Law of Large Numbers
II. The Central Limit Theorem
I1l. The Law of the Iterated Logarithm

These theorems are based on the concept of weak
convergence or are derived from the central limit theorem.
Before we discuss them briefly, let's review some
important terms that will be used.

SEQUENCE OF INDEPENDENT AND IDENTICALLY
DISTRIBUTED RANDOM VARIABLES

We say that {X;,, n = 1} is a sequence of independent
random variables if any group of these variables, no
matter how small or large, is all independent of each other.
Let X and Y be two random variables with distribution
functions F and G, respectively. We say that X and Y are
identically distributed if they follow the same
distribution; that is, F(x) = G(x) for all real values of x.

A sequence {X,, n = 1} is called independent and
identically distributed (i.i.d.) if:

The variables are independent of each other, and each

random variable X, has the same
distribution as the first one, meaning P(X, < x) = F(x) for
alln = 2.

MODES OF CONVERGENCE

There are different ways in which a sequence of random
variables can approach a limit. These are called modes of
convergence. We'll look at three types of convergence for
random variables, and a kind for distributions.

1. CONVERGENCE IN PROBABILITY

A sequence of random variables {X,,} is said to converge in
probability to a random variable X if, for every small
numbere>0, P(|X,-X|>g)—=>0asn—-»»

This means that the probability that X, is far from X
becomes smaller and smaller as n increases. We write this

P
as: X, - X in probability, or symbolically: X, — X,

2. ALMOST SURE CONVERGENCE
A sequence {X,} converges almost surely (also called
with probability 1) to a random variable X if:

P( lim X, :X): 1. In simpler terms, this means that

n—ow

with probability 1, the values of X, will eventually settle
down and stay close to X forever. We write this as:

a.s
X, — X almost surely, or symbolically: X, — X.
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3. CONVERGENCE IN DISTRIBUTION

A sequence of random variables {X,, n = 1}, with
corresponding distribution functions {F,}, is said to
converge in distribution (or weakly) to a random
variable X with distribution function F if:F,(x) - F(x) as n
— 00, at every point where F is continuous. This type of

convergence is written as:X, — X in distribution, or
d
X, =X, n—oo.

I. LAWS OF LARGE NUMBERS

Let {Xn, n = 1} be a sequence of random variables with a
common distribution function. F, defined on the same
probability space (@, I, P).Let the partial sum sequence
be:

n
S, =Y X, ,fornz1.
A k

We are interested in knowing under what conditions on
{X,} there exists a constant random variable § (called
degenerate, because it takes only one value), such that: S,
/ n— & under any mode of convergence.

If this happens with convergence in probability, we say the
Weak Law of Large Numbers (WLLN)hold.

If it happens under almost sure convergence, we say the
Strong Law of Large Numbers (SLLN) hold.

Let’s look at some examples:

(A) KHINTCHINE'S WEAK LAW OF LARGE NUMBERS
(WLLN)

Let {X,, n = 1} be a sequence of i.i.d. random variables. If
the expected value E(X;) = p (a finite mean exists), then:

Sn / n = pin probability, as n — 00.This means
that the sample average gets closer and closer to the
expected value p with high probability as the number of
terms increases.

(B) KOLMOGOROV’'S WEAK LAW OF LARGE NUMBERS
(WLLN):

Let {X,, n = 1} be a sequence of independent and
identically distributed random variables with a common
distribution function F. A necessary and sufficient
condition for the Weak Law of Large Numbers to hold for

S
?”- £ —F—0is that !Lr?ot{l—F(t)+F(—t)}= 0.
If the condition is satisfied &, may be taken as

&, 2] x dF(x).

Example 1: Consider a random variable X with the
distribution function
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0, if x<a,
F(x)= , where ay is a solution of
1 .
1- , if>a,
x log x
aolog ap=1.

This example does not satisfy Khintchine’s WLLN but does
satisfy Kolmogorov’s WLLN.

Example 2: Consider the standard Cauchy distribution.
Since E(X) does not exist, Khintchine’s WLLN does not
hold. Kolmogorov’'s WLLN also fails in this case.

(C) TCHEBYCHEV’S WEAK LAW OF LARGE NUMBERS:

Let {X, n = 1} be a sequence of uncorrelated random
variables such that E(X,) = p, Var(X,) = o,%,andCov(X;, X;)
=0fori#j.

Define the sample mean and the average mean as:
o _1¢ - 13
xn:—ZXi andp, = —Zui :
n i=1 n i=z1
Then, X, converges in probability to an ,as n — oo,provided

n
2
Z(’k
that:k=1—2—>0as n—o.
n
II. CENTRAL LIMIT THEOREM

Let {X,,, n = 1} be a sequence of random variables, and let

n
Sn = > Xk ,nh>1, be the sequence of partial sums.

k=1
The Central Limit Problem determines under what
conditions on {X,, n = 1} there exist sequences of real
constants {Ap, n = 1} and {By,, n =2 1} (with B, > 0 asn —»
) such that the sequence (S, - A,) / B, converges
(weakly) to a non-degenerate random variable
(particularly, a normal variable).

Some important versions of the Central Limit Theorem
(CLT) are presented below.

(D) LINDEBERG-FELLER CENTRAL LIMIT THEOREM

Let {X,, n = 1} be a sequence of independent, identically
distributed random variables with Var (X,) = 6,> < oo, n =

n
1,2,3,..; LetS, =in , E(Xn) = 1o, my = E(Sy) and s,2 =
i=1
Var(S,).Then the following two conditions:
)] (Sn - my)/s, converges in distribution to a
standard normal variable, and

(i)  E(expfit(S,-m)/s,)) - exp{-t’/2} for
every t € R, holds if and only if, for every € > 0,
the condition
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(iii) [%] .2;: E((xi " )2 _1{|Xi w|>€s, }) —0

is satisfied.

The sufficiency part of condition (iii) is called the
Lindeberg condition, and the necessity part of condition
(iii) is called the Feller condition. Together, they form the
Lindeberg-Feller Central Limit Theorem (CLT).

(E) CENTRAL LIMIT THEOREM DUE TO PAUL LEVY

(F) CENTRAL LIMIT THEOREM DUE TO LYAPUNOV

III. LAWOFTHE ITERATED LOGARTM:

Let {X,, n = 1} be a sequence of independent and
identically distributed random

variables with common distribution function F, defined on
a common probability space

n
(Q, 3, P). Let S, :ZXi , N >1.The sequence {S,} is
i=1
called the partial sum
S
zZ ="_A
n B n
n

sequence. Set

,N>1, n >1, where {A,} and {B,} are

some norming constants with B,>0.

When B, = n and A, = 0, the laws of large of numbers tells
that the sequence {Z,, n >1} converges to a degenerate
random variable, under any modes of convergence,
discussed above. i.e., convergence in probability or almost
sure convergence.

Secondly, central limit problems tell that under what
conditions on {X,, n >1}, there exist {A,, n 21} and {By, n
>1} be sequences of real constants (B,—, as n —»w ), such
that a sequence {Z.} converges (weakly) to a
non-degenerate random variable (particularly normal
variable).

Therefore, it is natural to ask what happens in between the
laws of large numbers and the central limit problem, when
the limit does not exist, i.e, whether non-trivial limit
behaviour is obtainable or not? Hence, the study relates to
these types of issues, we call it as “Law of Iterated
Logarithm”. i.e,, the studies of the behaviour of the upper
sums limit and the lower sums limit is called “Law of
Iterated Logarithm” (LIL). Hence, one wants to study
whether Limit infimum or Limit suprimum exists for
S

z =N _ A or not?
n B

In 1924, A. YA Khinchine is the first person to study these
types of problems. In fact, he developed this in number
theory. Later, A. N. Kolmogorov [1929] developed the
theory for bounded random variables with finite variance.

(G) KOLMOGOROV'S LAW OF THE ITERATED
LOGARITHM

Let{Xp,n = 1} be a sequence of independent random

variables with

EX) = 0 and E(X})=oc}, foralln>1
S, =Z X,and B? =Z o; forn>1.
k=1 k=1

Let {kn}) be a sequence of positive constants such that k,—
0 as n—oo.If the following conditions hold:

1.

n

2. XOC:P(|X |>k,B )<oo a.s., then

n=1
. S,
lim Sup =las.
N \/2 B? loglogB?
Proof:
Set Y,=X 1{\x oBa)* Then it suffices to show

that for every >0,

S.-E(Y,)

\/2B? loglog B?

Borel-Cantelli lemma, one can prove this; details are
omitted. If we replace every (Xn) by (-Xu), we obtain the
corresponding lower bound.

>(1+€)i.0| =0, and using the

In the case where the (X.) are unbounded but are
independent and identically distributed random variables,
Hartman and Wintner (1941) established that the
existence of the second moment is indeed sufficient for
this LIL for the partial sums. Their result is known as the
Hartman-Wintner type LIL, or the classical law of the
iterated logarithm.

(H) HARTMAN AND WINTNER LAW OF THE ITERATED
LOGARITHM

Let {Xn} be a sequence of independent and identically
distributed random variables

with E(X12) <oo and EX1 = 0. Then

. S

lim Sup——_-—
n— oo «/Zn loglog n
using a truncation method together with the Borel-Cantelli
lemma.

=1a.s.The proof follows by

When E (|Xl|2 ’ E) < ocoAllan Gut (1986) established the

classical LIL for geometrically fast increasing
subsequences of the partial sums. In fact, he proved that

S *
I|m O =J1+€ as.,

\/ZB loglog B,,

where €* is a constant determined by the growth rate of
the subsequence {ny}. Torrang (1987) extended the result
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to random subsequences.

I"Ik+1
nk

recover the classical result:

Observe that when — 00, then (e* = 0), and we

Ny

lim Su =1las.

k=00 p\/ZBnk loglog B,,

That is, for such cases, the norming sequence

\ IZBik IoglogBﬁk is not precise enough to give

almost-sure bounds for <Snk ) .

Ny
Ny
Allan Gut (1996) have shown that the classical normalizing

sequence must be replaced by an adjusted one:

— 00 Rainer Schwabe and

In general, whenever

ny

2B; |loglog B + loglog [M] :

Note that sequences of the form (nx = [cK], (¢ > 1), fall
within the class of geometrically increasing subsequences.

For a comprehensive treatment of the LIL literature,
see Bingham (1986).

WHEN THE SECOND MOMENT IS INFINITE

To understand the LIL in the case where the second
moment is infinite, we first need to discuss certain types of
distributions that possess infinite second moments.

INFINITELY DIVISIBLE DISTRIBUTIONS

A distribution function F is called infinitely divisible (i.d.) if,
for every positive integer n, there exists a distribution

function F, such thatF = F:n, that is, F is the n-fold
convolution of Fy.

Equivalently, a characteristic function ¢ is said to be
infinitely divisible if, for every integer n, there exists a

characteristic function ¢n such that ¢(t) = (¢n ('[))n :

EXAMPLES
1. NORMAL DISTRIBUTION:

Let ¢ be the characteristic function of a normal
random variable with mean pand variance o 2.

Then ¢(t) = exp{ipt - %tzcz} which is clearly
infinitely divisible.

2. POISSON DISTRIBUTION:
For a Poisson distribution with parameter,
(1) = exp{Ae"-D)}.
and hence ¢ (t) is infinitely divisible.

3. GAMMA DISTRIBUTION:
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For a Gamma distribution with shape o and rate j3,
o) = (l - it/B)-a . which is also
infinitely divisible.
REMARK:

The class of all infinitely divisible distributions coincides
with the class of limit distributions (in the sense of weak
convergence) of sums of independent random variables.
Moreover, the weak limit of a sequence of infinitely
divisible distributions, if it exists, is itself infinitely
divisible.

DISTRIBUTIONS OF CLASS L

Let {X,, n = 1} be a sequence of independent random
variables, and let {b,} be a sequence of positive real
numbers such that the following uniform asymptotic
negligibility (U.ANN.) condition holds:
Max P(|Xk| > sbn> — 0, for every £ > 0.

1<k<n

X
Write X = b—k, 1<k <n.Then the triangular array
n

{Xnx} satisfies the U.A.N. condition.

n
SetS, =Z X.xoN>1. Let Class L be the set of all
k=1
distributions that arise as weak limits of the distributions
of the sums an+bnSy, where a, and b,> 0 are suitably
chosen constants.
It follows that Class L forms a subclass of the infinitely
divisible distributions.

A distribution function F with characteristic function

¢ belongs to Class L, if and only if, for every 0 < c < 1,
there exists a characteristic function ¢,

B(t) = p(ct), (1), t € R.
REMARK:

Degenerate distributions, the normal distribution, the
Cauchy distribution, and the two-parameter Laplace
distribution all belong to Class L.

STABLE DISTRIBUTIONS

A distribution function F is said to be stable if and only if,
for every bi> 0, bz> 0, and real numbers a; and ay, there
existb > 0and a real number a such that

F(b1x +a1) *F(bz x + az) = F(bx + a),
or the equivalent defining relation your source implies.

The characteristic function ¢ (t) of a stable distribution
has the following representation:

o(t) = exp{iat -clt/* (1-iBsgn(t)tan“7“)},

where a, b (often written 8), v, and c, are real constants
with ¢ 2 0, |[b|< 1, and 0 <a< 2. Here, a is called the
characteristic exponent. The parameters yand c determine
only the location and scale; therefore, without loss of
generality, we may assume y = 0 and c = 1.
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A stable random variable is positive-valued (respectively
negative-valued) whenever 0 <o< 1 and pf = -1
(respectively B = 1) in the characteristic function
representation. A stable random variable with o = 2 is a
normal random variable.

SEMI-STABLE DISTRIBUTIONS

A distribution function G is said to be semi-stable if it is
either normal or if the

characteristic function ¢ (t) of G is of the form with
spectral function

H(-x) =x*q,(log x), x>0 and H(x) =-x"°q,(log x), x>0

where 0 <a< 2, and where q; and qzare periodic functions
with a common period. These functions satisfy, for all x
andallh >0,

e*"q,(x-h)-e“"q,(x+h)>0 andd, >q,(x)>c, =12
with c1 + c2> 0.
DOMAIN OF ATTRACTION

Let {X,, n =2 1} be a sequence of independent and
identically distributed random

variables with a common distribution function F. Let
n

S, =ZXi ,N>1.SetZ = M, where {A,} and
i=1 Bn

{Bu} are sequences of real constants with B,> 0. If the

sequence of normalised sums {Z,} converges in

distribution to a random variable whose distribution

function is G, then F is said to belong to the domain of

attraction of G. It is well known that such a limit law is

always a stable law (see Gnedenko, B. V. and Kolmogorov,

A.N.[1954], p. 162).

DOMAIN OF PARTIAL ATTRACTION

Sometimes it may happen that the sequence (Z,) does not
converge for any choice of the constants (A,) and (Bn).
However, for some subsequence (ng), the corresponding
normalised sequence may converge to a non-degenerate
distribution. In such a case, the distribution function F is
said to belong to the domain of partial attraction of that
limit law. The limit law in this setting is always an
infinitely divisible distribution.

DOMAIN OF NORMAL ATTRACTION

A distribution function F (or a random variable X with
distribution function F) is said to belong to the domain of
normal attraction of a stable law with characteristic
exponenta,

0 <as< 2, if it belongs to its domain of attraction withB, =
anl/%,where a is some positive constant.

n
Now setS, :Z X, , n >1.1f the sequence{Z, n = 1}, for
i=1
suitable choices of {A.} and {Bn}, converges weakly, then it
is well known that the limit law must be stable (see
Gnedenko, B. V. and Kolmogorov, A. N. [1954], p. 162). In
this case, F is said to belong to the domain of attraction of
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the limiting stable law.

It is also known that every stable law belongs to its own
domain of attraction. For an integer subsequence(ny), and

for  appropriate  choices of A, andB, , if
_ S = A
n
K Bnk

converges weakly to a non-degenerate law, then the limit
must necessarily be an infinitely divisible distribution. In
this situation, F is said to belong to the domain of partial
attraction of the limiting infinitely divisible law. It is true
that every infinitely divisible law has a non-empty domain
of partial attraction (see Gnedenko, B. V. and Kolmogorov,
A. N. [1954], p. 184). Kruglov [1972] characterised the

Nk

class U of limit laws of an = Y ynder the

Nk
assumptions that the subsequence (nix) is strictly

Nk
1o
k

established that the class U of limit laws coincides with the
class of all semi-stable laws.

increasing and that converges to a constant. They

When the random variables (X,) are independently
distributed with a common symmetric distribution
function, Chover [1966] obtained a law of the iterated
logarithm by using power normalization for the sequence
of partial sums {S,}. He established these results based on
the tail probabilities of the random variable X;. Specifically,
Chover observed that for stable random variables, an LIL
involving the limit superior cannot be obtained under
linear normalisation, but it becomes possible under power
normalisation. In fact, when the X,'s are i.i.d. symmetric
stable random variables, Chover (1966) established an LIL
for S, using power normalisation; that is,

lim Sup
I (Ioglogn)”“

for a suitable constant C.

Later, Vasudeva (1984) extended the result to random
variables in the domain of attraction of a stable law with
index 0 <a< 2. Divanji and Vasudeva (1989) further
extended the result to the domain of partial attraction of a
semi-stable law with index 0 <o< 2.

In fact, Professor R. Vasudeva and we studied laws of the
iterated logarithm for delayed sums, weighted sums, stable
subordinators, moving averages, random sums, Wiener
processes, and related structures and published many
papers in national and international journals.
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